Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558122

RESUMO

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Assuntos
Melatonina , Glândula Pineal , Animais , Glândula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Fatores de Transcrição/metabolismo , Ritmo Circadiano
2.
Sci Transl Med ; 16(742): eadi4490, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598613

RESUMO

Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting.


Assuntos
Hemostáticos , Roedores , Animais , Camundongos , Suínos , Roedores/metabolismo , Distribuição Tecidual , Plaquetas/metabolismo , Hemorragia , Fibrina/química , Fibrina/metabolismo
3.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607011

RESUMO

Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Ratos , Masculino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Glicerol , Ratos Wistar , Roedores/metabolismo , Óxido Nítrico , Nociceptividade , Nitroglicerina/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Açúcares
4.
Neurobiol Dis ; 194: 106462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442845

RESUMO

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Fenofibrato , Ratos , Animais , Distonia/genética , Distonia/metabolismo , Roedores/metabolismo , Fluordesoxiglucose F18 , PPAR alfa/metabolismo , Distúrbios Distônicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucose
5.
Methods Mol Biol ; 2754: 323-341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512674

RESUMO

The intracellular accumulation of microtubule-associated protein tau is a characteristic feature of tauopathies, a group of neurodegenerative diseases including Alzheimer's disease. Formation of insoluble tau aggregates is initiated by the abnormal hyperphosphorylation and oligomerization of tau. Over the past decades, multiple transgenic rodent models mimicking tauopathies have been develop, showcasing this neuropathological hallmark. The biochemical analysis of insoluble tau in these models has served as a valuable tool to understand the progression of tau-related pathology. In this chapter, we provide a comprehensive review of the two primary methods for isolating insoluble tau, namely, sarkosyl and formic acid extraction (and their variants), which are employed for biochemical analysis in transgenic mouse models of tauopathy. We also analyze the strengths and limitations of these methods.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Roedores/metabolismo , Modelos Animais de Doenças , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38428625

RESUMO

Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.


Assuntos
Larrea , Humanos , Animais , Larrea/metabolismo , Creosoto/toxicidade , Creosoto/metabolismo , Herbivoria/genética , Biotransformação , Roedores/metabolismo , Sigmodontinae/genética , Sigmodontinae/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396894

RESUMO

The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia, potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localization during renal injury, a critical information base, remain unexplored. This study investigates the expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin), and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models of renal injury. The protein expression of these targets, initially confined to specific tubular renal cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR gene expression correlates with protein changes in a genetic model of focal and segmental glomerulosclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glucose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing, likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in future studies exploring this receptor's involvement in renal damage of different origins.


Assuntos
Diabetes Mellitus Experimental , Glomerulosclerose Segmentar e Focal , Nefropatias , Síndrome Metabólica , Camundongos , Animais , Humanos , Renina/genética , Renina/metabolismo , Síndrome Metabólica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Roedores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Rim/metabolismo , Nefropatias/metabolismo , Ligantes
8.
Neurochem Res ; 49(5): 1347-1358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353896

RESUMO

Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.


Assuntos
Fator de Crescimento Epidérmico , Neurônios GABAérgicos , Neocórtex , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Metaloproteinases da Matriz/metabolismo , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Roedores/metabolismo
9.
Diabetes ; 73(5): 653-658, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387049

RESUMO

Reactive oxygen species (ROS) are formed by virtually all tissues. In normal concentrations they facilitate many physiologic activities, but in excess they cause oxidative stress and tissue damage. Local antioxidant enzyme synthesis in cells is regulated by the cytoplasmic KEAP-1/Nrf2 complex, which is stimulated by ROS, to release Nrf2 for entry into the nucleus, where it upregulates antioxidant gene expression. Major antioxidant enzymes include glutathione peroxidase (GPx), catalase (CAT), superoxide dismutases (SOD), hemoxygenases (HO), and peroxiredoxins (Prdx). Notably, the pancreatic islet ß-cell does not express GPx or CAT, which puts it at greater risk for ROS damage caused by postprandial hyperglycemia. Experimentally, overexpression of GPx in ß-cell lines and isolated islets, as well as in vivo studies using genetic models of type 2 diabetes (T2D), has demonstrated enhanced protection against hyperglycemia and oxidative stress. Oral treatment of diabetic rodents with ebselen, a GPx mimetic that is approved for human clinical use, reproduced these findings. Prdx detoxify hydrogen peroxide and reduce lipid peroxides. This suggests that pharmacologic development of more potent, ß-cell-specific antioxidants could be valuable as a treatment for oxidative stress due to postprandial hyperglycemia in early T2D in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Roedores/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Catalase/genética , Catalase/metabolismo , Superóxido Dismutase/genética , Hiperglicemia/tratamento farmacológico , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo
10.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38316048

RESUMO

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Assuntos
Carcinógenos , Nitrosaminas , Humanos , Animais , Carcinógenos/toxicidade , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Mutagênicos/toxicidade , Roedores/metabolismo , Carcinogênese , Carbono , Testes de Mutagenicidade
11.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
12.
Methods Mol Biol ; 2763: 37-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347397

RESUMO

Since the core protein of mucin in the digesta of the stomach and small intestine, which is less affected by bacteria, remains intact, mucin content can be measured by enzyme-linked immunosorbent assay (ELISA). However, the mucin core protein in bacteria-rich colon digesta and feces is partially hydrolyzed by bacterial enzymes and not fully recognized by mucin antibodies, so mucin cannot be accurately quantified by ELISA. This method quantifies the glycan content linked to the mucin core protein and expresses mucin content in the colon digesta and feces as the equivalent of O-linked oligosaccharide chain. Although mucin glycans are also hydrolyzed by colonic bacteria, this method is a more accurate and simple way to measure mucin content in the digesta of the large intestine and feces than the ELISA method.


Assuntos
Mucinas , Roedores , Animais , Mucinas/metabolismo , Roedores/metabolismo , Oligossacarídeos/análise , Polissacarídeos/metabolismo , Bactérias/metabolismo , Fezes/microbiologia
13.
Neurosci Lett ; 823: 137664, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38309326

RESUMO

Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Camundongos , Ratos , Animais , Doença de Alzheimer/metabolismo , Roedores/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Ratos Endogâmicos F344 , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Sinalização do Cálcio/fisiologia
14.
Neurochem Res ; 49(4): 872-886, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281247

RESUMO

Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.


Assuntos
Neuralgia , Canais de Potencial de Receptor Transitório , Animais , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/uso terapêutico , Roedores/metabolismo , Qualidade de Vida , Neuralgia/metabolismo , Transdução de Sinais
15.
Eur Rev Med Pharmacol Sci ; 28(1): 419-432, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235894

RESUMO

OBJECTIVE: Anxiety and depression are common psychiatric disorders that affect millions of people worldwide. Lipopolysaccharide (LPS) is a bacterial endotoxin that has been demonstrated to cause depression and anxiety-like behaviors in animal models. Fustin is a flavonoid found in various plant species that have been reported to have neuroprotective effects. The study proposed the evaluation of fustin's impact on anxiety and depression in LPS-injected rats. MATERIALS AND METHODS: The efficacy of fustin in higher and lower doses was studied by administering a single dose of LPS-injected anxiety/depression in rodents. Behavioral models like the elevated plus maze test, open field test, marble burying test, force swimming test, tail suspension test, and hyperemotionality behavior were performed to evaluate anxiety/depression in rodents. The neuroinflammatory markers such as interleukin-6 (IL-6), interleukin-1ß (IL-1ß), nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), apoptosis marker caspase-3, and brain-derived neurotrophic factor (BDNF) were also measured as a part of the study. Additionally, biochemical markers of oxidative stress, such as malonaldehyde (MDA) and antioxidants, including superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and nitric oxide (NO), were also evaluated. RESULTS: LPS administration resulted in significant (p<0.001) changes in behavior tests and biochemical markers including IL-1ß, IL-6, NF-κB, TNF-α, NO, caspase-3, BDNF, MDA, CAT, SOD, and GSH. In contrast, treating the rats with fustin significantly improved the behavior tests and restored the changes in biochemical markers. CONCLUSIONS: The current work established the efficacy of fustin with its therapeutic impact on depression and anxiety-like behaviors in rodent experimental models through its modulation of apoptosis markers, oxidative stress, and neuroinflammation.


Assuntos
Depressão , Flavonoides , NF-kappa B , Animais , Ratos , Ansiedade/tratamento farmacológico , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Flavonoides/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Estresse Oxidativo , Roedores/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Chem Biol Interact ; 390: 110889, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272248

RESUMO

The current study was designed to test a functional food (FF) mixture containing aldose reductase inhibitors and antiglycation bioactive compounds for suppressing the onset and progression of cataracts in a diabetic rat model. Two-month-old Sprague Dawley rats were grouped as control (C), diabetes untreated (D), and diabetic rats treated with FF at two doses (FF1 = 1.35 g and FF2 = 6.25 g/100g of diet). Diabetes was induced by a single injection of streptozotocin. The FF is a mixture of amla, turmeric, black pepper, cinnamon, ginger, and fenugreek added to the rodent diet. The status of cataracts was monitored weekly by a slit lamp examination for 20 weeks, after which animals were sacrificed to collect eye lenses. Feeding FF1 and FF2 to diabetic rats yielded a significant anti-hyperglycaemic effect and marginally prevented body weight loss. FF delayed cataract progression, and FF2 showed better efficacy than FF1. FF prevented the loss of lens crystallins and their insolubilization in diabetic rats. The antioxidant potential of FF was evident with the lowered protein carbonyls, lipid peroxidation, and prevention of altered antioxidant enzyme activities induced by diabetes. These studies demonstrate the efficacy of plant-derived dietary supplements against the onset and progression of cataracts in a well-established rat model of diabetic eye disease.


Assuntos
Catarata , Diabetes Mellitus Experimental , Cristalino , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Roedores/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Alimento Funcional , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Aldeído Redutase/metabolismo
17.
Neuropharmacology ; 246: 109836, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185416

RESUMO

This work describes the characterization of BNC210 (6-[(2,3-dihydro-1H-inden-2-yl)amino]-1-ethyl-3-(4-morpholinylcarbonyl)-1,8-naphthyridin-4(1H)-one), a selective, small molecule, negative allosteric modulator (NAM) of α7 nicotinic acetylcholine receptors (α7 nAChR). With the aim to discover a non-sedating, anxiolytic compound, BNC210 was identified during phenotypic screening of a focused medicinal chemistry library using the mouse Light Dark (LD) box to evaluate anxiolytic-like activity and the mouse Open Field (OF) (dark) test to detect sedative and/or motor effects. BNC210 exhibited anxiolytic-like activity with no measurable sedative or motor effects. Electrophysiology showed that BNC210 did not induce α7 nAChR currents by itself but inhibited EC80 agonist-evoked currents in recombinant GH4C1 cell lines stably expressing the rat or human α7 nAChR. BNC210 was not active when tested on cell lines expressing other members of the cys-loop ligand-gated ion channel family. Screening over 400 other targets did not reveal any activity for BNC210 confirming its selectivity for α7 nAChR. Oral administration of BNC210 to male mice and rats in several tests of behavior related to anxiety- and stress- related disorders, demonstrated significant reduction of these behaviors over a broad therapeutic range up to 500 times the minimum effective dose. Further testing for potential adverse effects in suitable rat and mouse tests showed that BNC210 did not produce sedation, memory and motor impairment or physical dependence, symptoms associated with current anxiolytic therapeutics. These data suggest that allosteric inhibition of α7 nAChR function may represent a differentiated approach to treating anxiety- and stress- related disorders with an improved safety profile compared to current treatments.


Assuntos
Ansiolíticos , Receptores Nicotínicos , Ratos , Masculino , Camundongos , Humanos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Ansiolíticos/farmacologia , Roedores/metabolismo , Receptores Nicotínicos/metabolismo , Antidepressivos , Hipnóticos e Sedativos , Regulação Alostérica
18.
Rapid Commun Mass Spectrom ; 38(3): e9672, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211346

RESUMO

RATIONALE: Nav 1.1, 1.2, and 1.6 are transmembrane proteins acting as voltage-gated sodium channels implicated in various forms of epilepsy. There is a need for knowing their actual concentration in target tissues during drug development. METHODS: Unique peptides for Nav 1.1, Nav 1.2, and Nav 1.6 were selected as quantotropic peptides for each protein and used for their quantification in membranes from stably transfected HEK293 cells and rodent and human brain samples using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS: Nav 1.1, 1.2, and 1.6 protein expressions in three stably individually transfected HEK293 cell lines were found to be 2.1 ± 0.2, 6.4 ± 1.2, and 4.0 ± 0.6 fmol/µg membrane protein, respectively. In brains, Nav 1.2 showed the highest expression, with approximately three times higher (P < 0.003) in rodents than in humans at 3.05 ± 0.57, with 3.35 ± 0.56 in mouse and rat brains and 1.09 ± 0.27 fmol/µg in human brain. Both Nav 1.1 and 1.6 expressions were much lower in the brains, with approximately 40% less expression in human Nav 1.1 than rodent Nav 1.1 at 0.49 ± 0.1 (mouse), 0.43 ± 0.3 (rat), and 0.28 ± 0.04 (humans); whereas Nav 1.6 had approximately 60% less expression in humans than rodents at 0.27 ± 0.09 (mouse), 0.26 ± 0.06 (rat), and 0.11 ± 0.02 (humans) fmol/µg membrane proteins. CONCLUSIONS: Multiple reaction monitoring was used to quantify sodium channels Nav 1.1, 1.2, and 1.6 expressed in stably transfected HEK293 cells and brain tissues from mice, rats, and humans. We found significant differences in the expression of these channels in mouse, rat, and human brains. Nav expression ranking among the three species was Nav 1.2 ≫ Nav 1.1 > Nav 1.6, with the human brain expressing much lower concentrations overall compared to rodent brain.


Assuntos
Proteínas de Membrana , Roedores , Humanos , Ratos , Camundongos , Animais , Células HEK293 , Roedores/metabolismo , Proteínas de Membrana/metabolismo , Canais de Sódio/metabolismo , Encéfalo/metabolismo , Peptídeos/metabolismo
19.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197871

RESUMO

Insulin resistance contributes to the development of various diseases, including type 2 diabetes and gestational diabetes. Even though gestational diabetes is specific to pregnancy, it can result in long-term glucose intolerance and type 2 diabetes after delivery. Given the substantial health and economic burdens associated with diabetes, it is imperative to better understand the mechanisms leading to insulin resistance and type 2 diabetes so that treatments targeted at reversing symptoms can be developed. Considering that the endocrine cells of the pancreas (islets of Langerhans) largely contribute to the pathogenesis of diabetes (beta-cell insufficiency and dysfunction), the elucidation of the various mechanisms of endocrine cell plasticity is important to understand. By better defining these mechanisms, targeted therapeutics can be developed to reverse symptoms of beta-cell deficiency and insulin resistance in diabetes. Animal models play an important role in better understanding these mechanisms, as techniques for in vivo imaging of endocrine cells in the pancreas are limited. Therefore, this review article will discuss the available rodent models of gestational and type 2 diabetes that are characterized by endocrine cell impairments in the pancreas, discuss the models with a comparison to human diabetes, and explore the potential mechanisms of endocrine cell plasticity that contribute to these phenotypes, as these mechanisms could ultimately be used to reverse blood glucose dysregulation in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Gravidez , Animais , Feminino , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Roedores/metabolismo , Insulina/metabolismo
20.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261756

RESUMO

AIMS: Depression, the most prevalent psychiatric disorder, is associated with the occurrence and development of atrial fibrillation (AF). P2X7 receptor (P2X7R) activation participates in the development of depression, but little attention has been given to its role in AF. This study was to investigate the effects of P2X7R on AF in depression models. METHODS AND RESULTS: Lipopolysaccharide (LPS) and chronic unpredictable stress (CUS) were carried out to induce depression in rodents. Behavioural assessments, atrial electrophysiological parameters, electrocardiogram (ECG) parameters, western blot, and histology were performed. Atrial fibrillation inducibility was increased in both LPS- and CUS-induced depression, along with the up-regulation of P2X7R in atria. CUS facilitated atrial fibrosis. CUS reduced heart rate variability (HRV) and increased the expression of TH and GAP43, representing autonomic dysfunction. Down-regulation of Nav1.5, Cav1.2, Kv1.5, Kv4.3, Cx40, and Cx43 in CUS indicated the abnormalities in ion channels. In addition, the expression levels of TLR4, P65, P-P65, NLRP3, ASC, caspase-1, and IL-1ß were elevated in depression models. Pharmacological inhibitor (Brilliant Blue G, BBG) or genetic deficiency of P2X7R significantly mitigated depressive-like behaviours; ameliorated electrophysiological deterioration and autonomic dysfunction; improved ion channel expression and atrial fibrosis; and prevented atrial NLRP3 inflammasome activation in the pathophysiological process of AF in depression models. CONCLUSION: LPS or CUS induces AF and promotes P2X7R-dependent activation of NLRP3 inflammasome, whereas pharmacological P2X7R inhibition or P2X7R genetic deficiency prevents atrial remodelling without interrupting normal atrial physiological functions. Our results point to P2X7R as an important factor in the pathology of AF in depression.


Assuntos
Fibrilação Atrial , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Depressão/prevenção & controle , Modelos Animais de Doenças , Fibrose , Inflamassomos/metabolismo , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Roedores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...